
Chapter 19

The Shape of Differential Geometry in
Geometric Calculus

David Hestenes

Abstract We review the foundations for coordinate-free differential geometry
in Geometric Calculus. In particular, we see how both extrinsic and intrinsic
geometry of a manifold can be characterized a single bivector-valued one-
form called the Shape Operator. The challenge is to adapt this formalism to
Conformal Geometric Algebra for wide application in computer science and
engineering.

19.1 Introduction

Geometric Algebra (GA) enabled the development of several new methods for
coordinate-free differential geometry on manifolds of any dimension in [8]. In
the most innovative of these methods, both extrinsic and intrinsic geometry
of a manifold are characterized by a single bivector-valued one-form called
the shape operator, which is essentially the derivative of the tangent space
pseudoscalar as it slides along the manifold. I regard creation of this approach
to differential geometry as some of my best work, so I am rather disappointed
that, apart from one fine application [15], it has not been further exploited
by me or anyone else.

As abundantly demonstrated in this book and elsewhere [2, 7], Conformal
Geometric Algebra (CGA) has recently emerged as an ideal tool for compu-
tational geometry in computer science and engineering. My purpose here is
to prepare the way for integrating the Shape Operator into the CGA tool
kit for routine applications of differential geometry. I hope this will stimulate
others to deal with practical implementation and applications.

David Hestenes

Arizona State University, Tempe, AZ, USA, e-mail: hestenes@asu.edu
This handout has appeared as Chapter 19 in Guide to Geometric Algebra in
Practice, L.Dorst and J.Lasenby, eds., Springer Verlag 2011, pp. 393–410.
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19.2 Geometric Calculus – basic concepts

Geometric Algebra is essential to formulate the basic concepts of “vector
derivative” and “directed integral.” Their initial formulations in [3] raised
questions about relations to the Cartan’s concept of “differential forms” [5].
That stimulated development of the Geometric Calculus (GC) in Chapters
4-7 of [8].

To elucidate the structure of Geometric Calculus, its basic concepts are
listed here and their unique features are described in subsequent sections.
The purpose is to explain how GC enables differential geometry without
coordinates.

• Universal Geometric Algebra – arbitrary dimension and signature
• Vector manifolds – for representing any manifold
• Directed integrals and differential forms
• Vector derivative and the fundamental theorem of calculus
• Differentials and codifferentials for mappings and fields
• Shape and curvature for differential geometry

19.3 Differentiable Manifolds as Vector Manifolds

A (differentiable) manifoldMm of dimension m is a set on which differential
and integral calculus is well-defined. The standard definition requires covering
the manifold with overlapping charts of local coordinates. Calculus is then
done indirectly by local mappings to Rm = R⊗ R⊗ ...⊗ R. Proofs are then
required to establish that results are independent of coordinates.

In contrast, a vector manifold Mm = {x} of dimension m is defined as a
set of vectors (called points) in GA that generates at each point x a tangent
space with unit pseudoscalar Im(x). Any other manifold can then be defined
as a set that is isomorphic to a vector manifold.

Thus, GC enables a concept of manifold that is manifestly coordinate-free.
As we shall see, calculus can then be done directly with algebraic operations
on points, and geometry is completely determined by derivatives of the pseu-
doscalar. It should be noted that a vector manifold can be defined without
assuming that it is embedded in a vector space of specified dimension, though
embedding theorems can no doubt be proved therefrom.

Though GC enables a coordinate-free approach to manifolds, it also pro-
vides a very efficient formalism for handling coordinates. That is worth re-
viewing briefly, because it facilitates direct connection to the standard liter-
ature and, of course, use of coordinates when appropriate.

The vector-valued function x = x(x1, x2, ..., xm) represents a patch ofMm

parametrized by scalar coordinates (Fig. 19.1). The inverse mapping into Rm
is given by coordinate functions xµ = xµ(x). A coordinate frame {eµ = eµ(x)}
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Fig. 19.1 Coordinate curves.

is defined by

eµ = ∂µx =
∂x

∂xµ
= lim

4x
4xµ

with pseudoscalar

e(m) = e1 ∧ e2 ∧ ... ∧ em = |e(m)| Im.

It is interesting to note that Elie Cartan used the expression eµ = ∂µx in
an intuitive way at the foundation of his approach to differential geometry.
Thus, GC provides the means to give it a more rigorous formulation.

Calculations with frames are greatly facilitated by employing a reciprocal
frame {xµ}, often defined implicitly by the equations eµ · eν = δµν , which
have the solution

eµ = (e1 ∧ . . . ( )µ ∧ . . . ∧ em) e−1
(m),

where the µth vector is omitted from the product. This can be used for
a coordinate definition of the vector derivative, that is, the derivative with
respect to the point x:

∂ = ∂x = eµ∂µ where ∂µ = eµ · ∂ =
∂

∂xµ
. (19.1)

Consequently, the reciprocal vectors can be expressed as gradients:

eµ = ∂xµ.

The question remains: How can the vector derivative be defined without coor-
dinates? The answer is given by first defining integration on vector manifolds,
to which we now turn.
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Fig. 19.2 Vector Manifold.

19.4 Directed Integrals and the Fundamental Theorem

Let F = F (x) be a multivector-valued function on the manifold M = Mm

(Fig. 19.2) with a directed measure dmx = |dmx|Im(x). The measure can be
expressed in terms coordinates by

dmx = d1x ∧ d2x ∧ . . . ∧ dmx = e1 ∧ e2 ∧ . . . ∧ em dx1dx2 . . . dxm,

where dµx = eµ(x)dµx (no sum). Accordingly, the usual scalar-valued volume
element of integration is given by:

|dmx| = |e(m)| dx1dx2 . . . dxm.

The directed integral of F can now be expressed as a standard multiple
integral: ∫

M
dmxF =

∫
M
e(m) dx

1dx2 . . . dxm.

This establishes contact with standard integration theory. It is worth men-
tioning that there are many practical and theoretical advantages to defining
and evaluating the directed integral without reducing it to a multiple integral
with scalar coordinates, though that cannot be addressed here.

Now we are equipped to formulate the fundamental theorem of calculus
in the powerful general form that GC makes possible. We shall see that this
leads us to a coordinate-free definition of the vector derivative in terms of
the directed integral that reduces proof of the fundamental theorem to a
near triviality. In addition, it generalizes the definition of derivative through
(19.1) to apply to discontinuous functions (such as occur at the boundaries
of material media in physics).

It is enlightening to begin with the important special case of a manifold
embedded in a vector space: M = Mm ⊂ Vn. Let ∇ = ∇x denote the
derivative of a point in the vector space Vn. The derivative of any field F =
F (x) can then be decomposed algebraically into

∇F = ∇ · F +∇∧ F.
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Thus GC unifies the familiar concepts of “divergence” and “curl” into a single
vector derivative, which could well be dubbed the “gradient”, as it reduces
to the usual gradient when the field is scalar-valued.

Now we can formulate the first generalization of the fundamental theorem
of calculus made possible by GC:∫

M
(dmx) · ∇F =

∫
∂M

dm−1xF. (19.2)

As explained in [3] when this was first written down, all the integral formulas
of standard vector calculus (including those attributed to Gauss, Stokes and
Green) are included as special cases of this formula.

I was puzzled for a while by the role of the inner product on the left side
of (19.2). Then I realized its function is to project the derivative ∇ to a
derivative on the submanifold M, as expressed by

∂ = ∂x = I−1
m (Im · ∇).

Hence, one can write dmx ∂ = (dmx) · ∂ = (dmx) · ∇, so the theorem (19.2)
can be written in the form:∫

M
dmx ∂F =

∫
∂M

dm−1xF, (19.3)

which has no explicit reference to the embedding space. That observation
inspired the following coordinate-free definition for the vector derivative with
respect to x in M without reference to any embedding space:

∂F = lim
dω→0

1
dω

∮
dσF, (19.4)

where dω = dmx and dσ = dm−1x. I called this the “tangential derivative,”
when I first proposed it, to emphasize that it is determined by the restriction
of the variable x toM. One consequence of that is that the operator ∂ = ∂x
is itself a function of x, so, for example, the theorem ∇ ∧ ∇ = 0, which
holds for derivatives on a vector space (a “flat manifold”), does not apply for
derivatives on a curved manifold, where ∂ ∧ ∂ 6= 0 in general. That property
is essential for the formulation of differential geometry with GC, as we see
below.

This is not the place to discuss limit processes for defining the vector
derivative (19.4) and proving the fundamental theorem (19.3). However, the
method of simplices in [16] deserves mention, because it provides a practical
approach to finite element approximations.

Now we are prepared to explain how GC generalizes Cartan’s theory of
differential forms. For k ≤ m a differential k-form L = L(dkx, x) on a mani-
foldMm is a multivector-valued k-form, that is, it is a linear function of the
k-vector dkx at each point x. The simplest example is the volume element
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dkx, which is a k-vector-valued k-form. Another example is the (m− 1)-form
dm−1xF (x) on the right side of (19.3).

In Cartan’s terminology, the exterior differential of the k-form L is a (k+
1)-form dL defined here by

dL ≡ L̇(dk+1x · ∂̇) = L(dk+1x · ∂̇, ẋ),

where the overdot indicates the variable differentiated. Cartan’s abbreviated
notation dL suppresses the dependence on the volume element dk+1x that
is explicit in this definition. Note that the term “differential” as used here
refers to the fact that the form is a linear function of a “volume element”
intended to reside under an integral sign. In the next section we use the term
“differential” in a different sense related to transformations. However, the two
senses are intertwined when the transformation is applied to a form, which
is just a particular kind of tensor.

Now we can express the Fundamental Theorem of Geometric Calculus in
its most general form by the equation∫

M
dL =

∮
∂M

L. (19.5)

This looks identical to the “Generalized Stokes’ Theorem” in Cartan’s calcu-
lus of differential forms. However, Cartan’s forms are limited by being scalar-
valued and lacking the complete algebraic structure of GC. More specifi-
cally, Cartan’s theory is limited to functions of the form L = 〈dkxF (x)〉 =
(dkx) · F (x), where the angular brackets indicate scalar part and the center-
dot applies if F is k-vector-valued. Accordingly, the exterior differential be-
comes

dL = 〈dk+1x ∂F (x)〉 = 〈dk+1x ∂ ∧ F 〉 = (dk+1x) · (∂ ∧ F ).

Thus, Cartan’s exterior differential is equivalent to the curl in GC, though its
use in applications is more limited. When it is used to formulate Maxwell’s
equations, for example, the implicit volume element is just excess baggage,
except when integration is intended.

The GC generalization to multivector-valued differential forms has pro-
found applications. For example, it follows immediately from (19.3) that,
with simple provisos,

∂F = 0 ⇐⇒
∫
∂M

dm−1xF = 0.

For m = 2 this can be recognized as Cauchy’s Theorem for complex vari-
ables, so it gives a straight-forward generalization of that theorem to higher
dimensions. Similarly, a generalization of the justly famous Cauchy Integral
formula can easily be derived from (19.5), as explained elsewhere [8, 5].
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19.5 Mappings and Transformations

With the concept of vector derivative in hand, we are prepared to see how
Geometric Calculus enables coordinate-free transformations of multivector
fields on a given manifold or in mappings from one manifold to another. The
power of this formalism is amply demonstrated in an elegant new approach
to General Relativity called Gauge Theory Gravity [11, 1].

Fig. 19.3 Induced transformations of vector fields.

Let f be a an invertible diffeomorphism from one region of a given manifold
to another, as expressed by

f : x→ x′ = f(x), so that x = f−1(x′).

This transformation induces a linear transformation f of the tangent space at
each point called the differential of f . Accordingly, each vector field a = a(x)
undergoes a transformation (Fig. 19.3) defined by

f : a = a(x) → a′ = f(a) ≡ a · ∂f, so that a = f−1(a′).

The adjoint f of the transformation is an induced linear transformation
(Fig. 19.3) in the reverse direction:

f : b′ = b′(x′) → b = f(b′) ≡ ∂xf(x) · b′.

For applications one needs the theorem that the adjoint of the inverse trans-
formation is the inverse of the adjoint:

f−1 = f −1 : b(x) → b′(x′) = f−1 [b(f(x′))].

Note the complementary roles of directional derivative and gradient in the
definitions of differential and adjoint. Also note that no notion of “differential
as infinitesimal displacement” is involved.

To relate the GC approach to standard tensor calculus, consider a rank-2
tensor (field) T (a, b′) that is a linear function of vector fields a and b′. If these
fields transform according to the differential and adjoint laws respectively, the
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tensor is said to be contravariant in the first argument and covariant in the
second.

Fig. 19.4 Outermorphism of the differential.

The unique power of GC is manifest in the concept of outermorphism: the
unique extension of a linear transformation defined on a vector space to a
linear transformation that preserves the outer product, and hence defined on
the entire GA generated by the vector space [8, 4]. For a pair of vector fields,
the outermorphism of the differential gives us

f : a ∧ b → f(a ∧ b) = f(a) ∧ f(b),

as illustrated in Fig. 19.4. By linearity, this property generalizes easily to the
outermorphism of any multivector field [8]. In particular, it follows that the
outermorphism of the pseudoscalar I = I(x) is

f : I → f(I) = Jf I ′ so that Jf = det f = I ′−1f(I),

which shows that the Jacobian of the transformation, Jf , is just a scale factor
induced by the outermorphism of the pseudoscalar.

A generalization of the familiar chain rule for differentiation is given by
the transformation law for the vector derivative:

f : ∂ ′ → ∂ = f(∂ ′) or ∂x = f(∂x′).

This implies invariance of the directional derivative:

a · ∂ = a · f(∂ ′) = f(a) · ∂ ′ = a ′ · ∂ ′. (19.6)

Note that this applies whether a is a vector field or just a single vector in
a given tangent space. For example, if x = x(τ) is a curve with tangent
ẋ = dx/dτ , then (19.6) implies invariance of the chain rule for differentiating
fields:

d

dτ
= ẋ · ∂x = ẋ · f(∂x′) = f(ẋ) · ∂x′ = ẋ ′ · ∂x′ .
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Now we have all the necessary tools in hand for addressing the main subject
of this article: coordinate-free differential geometry.

19.6 Shape and Curvature

Fig. 19.5 Manifold pseudoscalar.

My purpose here is to explain how the differential geometry of a given
vector manifold M = {x} is completely determined by properties of its pseu-
doscalar I = I (x). For an oriented manifold the pseudoscalar is a single-
valued field defined on the manifold. It can be visualized at each point
(Fig. 19.5) as the tangent space (which it determines). Actually, as we have
seen, it is a defining property of the manifold. For an unoriented manifold like
a Möbius strip the pseudoscalar is doublevalued, as the orientation (algebraic
sign) can be reversed by sliding it smoothly along a closed curve. But that is
a minor point that will not concern us.

Let a = a(x) be a vector-valued function defined on the mainfold. We say
that it is a vector field if its values lie in the tangent space at each point of
the manifold. This property is definitively determined by the pseudoscalar.
Thus projection into the tangent space is a linear function defined by P (a) ≡
(a · I )I−1 ≡ a‖, while rejection from the tangent space is defined by P⊥(a) ≡
(a ∧ I )I−1 ≡ a⊥. Whence we derive the obvious result

a = (a · I + a ∧ I )I−1 = P (a) + P⊥(a) = a‖ + a⊥.

Of course, a vector field has the tangency properties a∧ I = 0 and a = P (a).
The differential Pb(a) of the manifold projection operator is given by

straightforward differentiation:

Pb(a) ≡ b · ∂̇Ṗ (a) = b · ∂P (a)− P (b · ∂a).

Note that b · ∂ = [P (b)] · ∂, that is, the inner product of any vector with the
vector derivative projects that vector into the tangent space, so differentials
are always taken with respect to tangent vectors or vector fields.



10 David Hestenes

Fig. 19.6 Shape and Spur.

As we are not interested in the specific vector direction b, we can differen-
tiate it out to get the shape tensor :

S(a) ≡ ∂̇Ṗ (a) = ∂bPb(a) = ∂̇ ∧ Ṗ (a) + ∂̇ · Ṗ (a).

It is easy to prove the following theorems:

∂̇ ∧ Ṗ (a) = S(a‖) ⇒ ∂̇ ∧ Ṗ (a⊥) = 0,

∂̇ · Ṗ (a) = S(a⊥) ⇒ ∂̇ ∧ Ṗ (a‖) = 0.

Consequently, we can decompose the shape tensor into bivector and scalar
parts:

S(a) = Sa +N · a,

where
Sa ≡ ∂̇ ∧ Ṗ (a) = S[P (a)] = S(a‖) (19.7)

and
N ≡ Ṗ (∂̇) = ∂aSa. (19.8)

By virtue of (19.7) the shape bivector Sa could well be called the curl of the
manifold M. It follows that P (Sa) = 0, so the bivector-valued tensor Sa is
not a field, as its values are not in the tangent algebra of M.

The vector N is called the spur (ofM), see Fig. 19.6. It follows from (19.8)
that N · P (a) = N · a‖ = 0, so N is not a vector field, as it is everywhere
orthogonal to the tangent algebra of M. As far as I know, the spur was not
identified as a significant geometrical concept until it was first formulated in
GC. We will not pursue it here. Rather, we aim to see how the shape tensor
relates to standard concepts of differential geometry.

The shape bivector has a simple geometric interpretation with great in-
tuitive appeal. It is easy to prove from its definition above that the shape
bivector is the rotational velocity of the pseudoscalar as it slides along the
manifold ; formally,

Sa = I−1a · ∂I.

Alternatively,
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∂I = ISa = I× Sa.

where the symbol × denotes the commutator product and the last inequality
is a consequence of I · Sa = 0 and I ∧ Sa = 0.

The curvature of the manifold is given by the shape commutator, defined
for vectors a and b by

C(a ∧ b) ≡ Sa × Sb = P (Sa × Sb) + P⊥(Sa × Sb). (19.9)

The right side shows that the full curvature decomposes into distinct intrinsic
and extrinsic parts. It can be proved that the intrinsic part is the usual
Riemann curvature, which can accordingly be defined by

R(a ∧ b) ≡ P (Sa × Sb).

Readers may be surprised that this simple expression does not involve the
usual “coefficents of connexion.” The moral is that the treatment of intrinsic
geometry can be simplified by coordinating it with extrinsic geometry! – a
striking claim that surely deserves close scrutiny. Supported by the power of
GC, the shape tensor provides the means for investigating this claim.

Extension of the derivative concept to “covariant derivative” is at the
heart of standard differential geometry. GC generalizes this to extension of
the vector derivative ∂ = ∂x to a coderivative D = Dx defined, for action on
any multivector-valued function A = A(x), by

DA ≡ P (∂A) = D ∧A+D ·A.

It follows that
∂A = DA+ S(A),

where the shape tensor for A is given by

S(A) ≡ ∂̇Ṗ (A) = ∂̇ ∧ Ṗ (A) + ∂̇ · Ṗ (A) = S(A‖) + S(A⊥).

For any tangent field A = P (A) = A(x), the cocurl is given by

D ∧A = P (∂ ∧A) = ∂ ∧A− S(A),

while the codivergence is given by

∂ ·A = D ·A = [D ∧ (AI)]I−1.

Many valuable differential identities can be derived from these definitions,
such as

D ∧D ∧A = P (∂ ∧ ∂ ∧A) = 0, D · (D ·A) = ∂ · (∂ ·A) = 0.
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The equivalent of the covariant derivative is the directional coderivative
(or codifferential) defined by

δaA ≡ a ·DA ≡ P (a · ∂A).

The commutator of codifferentials is determined by the intrinsic curvature:

(δaδb − δbδa)A = A×R(a ∧ b)

The Riemann curvature is a bivector function of a bivector variable with
the following (mostly well-known) properties of great importance in General
Relativity Theory:

Symmetry: (a ∧ b) ·R(c ∧ d) = (c ∧ d) ·R(a ∧ b)
Ricci Identity: a ·R(b ∧ c) + b ·R(c ∧ a) + c ·R(a ∧ b) = 0

Ricci tensor: R(b) ≡ ∂aR(a ∧ b) = −D · Sb
Scalar curvature: R ≡ ∂bR(b) = ∂ ·N
Bianchi identity: Ḋ ∧ Ṙ(a ∧ b) = 0
Einstein tensor: G(a) ≡ R(a)− 1

2aR

This should suffice to clarify how the shape tensor relates to conventional
formulations of differential geometry. For important examples of manifold
geometry, we turn to the special case of manifolds that are hypersurfaces in
a given manifold.

19.7 Hypersurfaces and classical geometry

The shape tensor generalizes the original approach to classical differential
geometry developed by Gauss, who characterized surfaces (2d manifolds) in
terms of their normals. The straightforward generalization of his approach
to hypersurfaces of any dimension has been formulated in modern terms by
[10]. Let us see how to do it with GC.

Fig. 19.7 The normal and its differential.
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Let M = Mm be an m-dimensional hypersurface in Em+1. Let i =
〈i〉m+1 = constant be the unit pseudoscalar for Em+1. Then the pseudoscalar
for M is given by I = ni, where n = n(x) is the unit normal. The function
n = n(x) is often called the “Gauss map” to support the intuition that it
is a mapping of the manifold onto a unit sphere. Instead, we describe the
normal sliding on the hypersurface in terms of its differential n(a) = a · ∂n.
Then the shape of the hypersurface reduces to a function of the normal and
its differential, see Fig. 19.7:

Sa = I−1a · ∂I = nn(a) = n ∧ n(a)

It is now straightforward to reduce geometric quantities in the previous sec-
tion to functions of the normal and its differential:

Curvature: R(a ∧ b) = P (Sa × Sb) = n(a) ∧ n(b) = n(a ∧ b)

Mean Curvature: H ≡ 1
m
∂an(a),with ∂an(a) = tr n = ∂ · n = −n ·N

Scalar Curvature: R = (∂b ∧ ∂a) · n(a) ∧ n(b) = (tr n)2 − tr n2

Gaussian Curvature: κ = I−1 · n(I)

For m = 2 the Gaussian curvature can be written κ = I−1 · R(I), so it is
equivalent to the Riemann curvature, which has only one component. It is
worth noting that the extrinsic component of the curvature (19.9) gives the
classical Codazzi-Mainardi equations for extrinsic geometry of a hypersurface,
but we will no go into that.

The rest of this section is devoted to surfaces in E3, since that is the case of
greatest practical interest to engineering and computer graphics. Interested
readers are invited to compare the present approach to the classical treatment
in [17] using vector calculus. Rather than review examples in [8], let me
discuss an important classical example with a new twist.

According to Coulomb’s law, the electric potential of a finite line charge
of length L and charge density λ is given by the integral

V (x) =
∫

kdq(s)
|x− x′(s)|

=
∫ L/2

−L/2

kλds

|x− se|
≡ kλϕ(x).

Remarkably, a simple expression for the value of this integral was overlooked
until recently when Rowley [14] discovered

ϕ(x) = ln
(
r+ + r− + L

r+ + r− − L

)
, where r± = |r±| = |x± 1

2Le|.

The equipotentials compose a family of confocal ellipsoids (Fig. 19.8). The
eccentricity ε and directrix d of each ellipsoid is given by ε ≡ tanh(ϕ/2) < 1,
so that
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Fig. 19.8 Ellipsoidal equipotentials.

1 + ε

1− ε
= eϕ =

r+ + r− + L

r+ + r− − L

d =
(r+ + r−)2 − L2

2L
= (ε−2 − 1)

L

2
,

r+ + r− =
L

ε
.

The electric field (for kλ = 1) is given by

E = −∇ϕ =
r̂+ + r̂−

d
.

Here is the surprising new geometric fact that Rowley discovered: The unit
normal n at each point of an ellipse or ellipsoid is given by

r̂+ + r̂− = ∇(r+ + r−) = Λn Λ2 = (r̂+ + r̂−)2 = 2(1 + r̂+ · r̂−).

Of course, the difference of the unit coradius vectors is a tangent vector
r̂+ − r̂− ≡ 2t. All this gives us a simple and perspicuous expression for the
differential of the normal: For any tangent vector a = P (a),

n(a) ≡ a · ∇n = λ[a− (a · t)t], with λ =
(

1
r+

+
1
r−

)
1
Λ

=
L

εr+r−Λ
.

Note that the tangent vector t is an eigenvector of the differential n.
It is now a simple matter to compute all geometric properties of an ellip-

soid of revolution using the apparatus developed above. Since ellipsoids have
many practical applications and the present approach is new, it is worth
recording the main results for future reference. For an m-dimensional ellip-
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soid of revolution we find

tr n = λ(m− t2)
n2(a) = λ[n(a)− tt · n(a)] = λ2[a + (a · t)(t2 − 2)t]

tr n2 = λ2[m+ (t2 − 2)t2] =
λ2

4
(
4m− 3− 5r̂+ · r̂− + 2(r̂+ · r̂−)2

)
.

Therefore:

Shape: Sa = nn(a) = λn[a− (a · t)t]
Curvature: R(a ∧ b) = n(a) ∧ n(b) = n(a ∧ b)

= λ2 (a ∧ b− t ∧ [t · (a ∧ b)])

Mean Curvature: H ≡ 1
m

tr n =
λ

m
(m− t2).

For the case m = 2 we have the particular results

Curvature: R(a ∧ b) = κa ∧ b

Gaussian Curvature: κ = λ2(1− t2) = 1
2λ

2(1 + r̂+ · r̂−)

Mean Curvature: H = 1
2 tr n = λ(1− 1

2 t2) = 1
2λ

(
3
2

+ r̂+ · r̂−
)
.

All this has some obvious generalizations, for example, to a general ellipsoid
with an orthonormal set of tangent vectors, which, like t, are eigenvectors of
the differential n.

Now let us turn to a general question of great interest and utility: What is
the “shape” of a curve embedded in a manifold? Shape and curvature are not
defined for a curve, because it is a one-dimensional manifold. Instead, shape
and curvature bivectors are replaced by the Darboux bivector [8], which com-
pletely characterizes the geometry of the curve. Let us address our question
for curves in E3 embedded in some surface, since that is the case of greatest
practical interest. The GC apparatus we are using makes generalization to
higher dimensions (and even mixed signature) fairly straightforward. In def-
erence to that possibility, we drop the convention of boldface type for vectors
in Euclidean space.

Let x = x(s) be a curve with arc length s. Then its “velocity” is a unit
tangent vector v = dx/ds ≡ ẋ. All derivatives of v are determined by the
Darboux bivector Ωv. In particular, the acceleration is given by the Frenet
equation

v̇ = Ωv · v.

Its magnitude is called the first curvature κτ = |v̇|.
The condition that the curve is embedded in a surface with normal n =

n(x) is that v = P (v) is a tangent vector and
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Sv = P⊥(Ωv) = nn(v) = n ∧ n(v).

This decomposes the “Darboux” into two parts:

Ωv = Sv + ωv = P⊥(Ωv) + P (Ωv),

where ωv = P (Ωv) is the rotation rate of the curve within the surface.
This decomposition can be characterized by two bending invariants [17],
the normal curvature κv = v · n(v) and the geodesic (tangential) curvature
κg = −I · ωv = u · ωv · v = u · v̇, where u = Iv is a unit vector orthogonal
to v. Obviously, κ2

g = −S2
v and κ2

g = −ω2
v . This completes our answer to the

question about the “shape” of an embedded curve.

Fig. 19.9 Triangular domain for the Gauss-Bonnet formula.

We can use what we have just learned to understand the beautiful and
profound Gauss-Bonnet Formula:∫

M
κdA+

∮
C
κgds+

∑
i

αi = 2π. (19.10)

This applies to any simply connected surface M bounded by a piecewise
differentiable closed curve C = ∂M with outer normal u = Iv and exterior
angles αi, as illustrated in Fig. 19.9. As before, κ = I−1R(I) is the Gaussian
curvature and κg = u · v̇ = −u̇ · ẋ is the geodesic curvature. In GC terms,
using the Riemann curvature R(d 2x) = κd 2x with directed area element
d 2x = IdA, the formula can be written∫

M
I−1R(d 2x)−

∮
C
u̇ · dx+

∑
i

αi = 2π. (19.11)
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Proof of the Gauss-Bonnet formula is a nice application of the Fundamental
Theorem [17]. Generalization of the formula to higher dimensions is highly
non-trivial [8], and it involves the Riemann curvature in the way it appears
in (19.11). No doubt there is more to be learned about this generalization
and variations on the theme.

Now consider an important special case. The bounding curves are geodesics
if κg = 0, and the figure in Fig. 19.9 is a geodesic triangle. For a sphere of
radius r the Gaussian curvature is r2; whence the first term in (19.10)) and
(19.11)) is the solid angle subtended by the regionM. An elegant expression
for this solid angle in terms of the vectorial endpoints is derived in [8], which
uses GA to describe the geometry of human body movement. Therein is
discussed the amazing fact that the human eye has learned to implement this
theorem to keep the retinal image upright in saccadic motion. That is the
import of the psychophysical discovery known as Listing’s Law.

19.8 Challenges

Let me conclude this review with a few challenges for further development of
the theory and applications.

• Extension to Conformal Geometric Algebra. The concept of vector
manifold is so general that there should be no problem in applying it to
the case when all points are null vectors as required for CGA. I would
recommend concentrating first on the geometry of hypersurfaces using the
conformal split [7] with the normal at each point x given by the unit
bivector E = x ∧ e∞.

• Finite Element Differential Geometry. There is an abundant litera-
ture on this subject with many examples worth translating into GA and
CGA. Reference [16] should be especially helpful for discrete versions of the
vector derivative and fundamental theorem. Regge Calculus is an elegant
approach to discretizing Riemannian geometry developed for applications
to General Relativity [13, 12]. Translation and adaptation to GC should
be fairly easy and enlightening. Applications to engineering and computer
science as well as physics look promising.

• Geometry of Movement. Using CGA to rework and extend the ap-
proach in [6] has great potential for robotics as well as biomechanics.

• Elasticity. The geometry of material media, including constitutive re-
lations as well as stresses, strains and deformations should be a fertile
domain for GC applications.

• Tangent cones for discontinuities. So far our approach to differential
geometry has ignored discontinuities and singularities of all kinds. GC is
well suited to handle such issues, especially in concert with the finite ele-
ment approach to geometry proposed above. But here is another approach
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worth investigating. My father developed the concept of tangent cone as
a portion of the tangent space at a point wherein convergence to a limit
obtains, and he applied it with great success to rigorous treatment of sin-
gularities in calculus of variations [9]. We have characterized the geometry
of a manifold by properties of the pseudoscalar for the tangent space. My
suggestion is to meld this notion with the tangent cone idea by using a
more general multivector to describe limit structure in the tangent space
at points that lie on creases, edges, corners and other discontinuities. I
regard this as a hard problem, because it is not well-defined and I don’t
really know how to approach it.
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Exercises

1. Suppose that the geodesic triangle in Fig. 19.9 lies on a unit sphere with
vertices at a, b, c so a2 = b2 = c2 = 1. Parallel transfer of a vector p
around the triangle can be calculated as follows: The tangent vector p at a
is transferred to a tangent vector ApA−1 at b by the spinor A = 1 + ba. It
can subsequently be transferred to the point c by B = 1 + cb and back to a
by C = 1 + ac. The net result is rotation by a spinor T = CBA. Show that

1
2T = 1 + a · b + b · c + c · a + a (c ∧ b ∧ a),

so p is rotated about the axis a through an angle φ given by

tan( 1
2φ) =

a · (b× c)
1 + a · b + b · c + c · a

How does this angle relate to the area of the triangle?

2. Use the result of the previous exercise to explain how the eye must rotate
during saccades in order to keep the image on the retina erect. See [6] for
details.

3. Generalize Rowleys potential φ(x) for an ellipsoid of revolution to an el-
lipsoid with axes a, b, c. Calculate the shape and curvature tensors.

4. Find an explicit expression for the Darboux bivector of a geodesic on an
ellipsoid. Calculate its normal and geodesic curvatures. How do these relate
to the curvatures of the ellipsoid?

5. Apply the Fundamental Theorem of Geometric Calulus to prove the Gauss-
Bonnet Formula (19.10).


